OpenCV  3.2.0
Open Source Computer Vision
Feature Matching with FLANN

.2.0+dfsg_doc_tutorials_features2d_feature_flann_matcher_feature_flann_matcher

Goal

In this tutorial you will learn how to:

Theory

Code

This tutorial code's is shown lines below.

/*
* @file SURF_FlannMatcher
* @brief SURF detector + descriptor + FLANN Matcher
* @author A. Huaman
*/
#include <stdio.h>
#include <iostream>
#include <stdio.h>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
void readme();
/*
* @function main
* @brief Main function
*/
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
int minHessian = 400;
Ptr<SURF> detector = SURF::create();
detector->setHessianThreshold(minHessian);
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
detector->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1 );
detector->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2 );
//-- Step 2: Matching descriptor vectors using FLANN matcher
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
//-- small)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance <= max(2*min_dist, 0.02) )
{ good_matches.push_back( matches[i]); }
}
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
for( int i = 0; i < (int)good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
waitKey(0);
return 0;
}
/*
* @function readme
*/
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

Explanation

Result

  1. Here is the result of the feature detection applied to the first image:

  2. Additionally, we get as console output the keypoints filtered:

cv::Mat::rows
int rows
the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
Definition: mat.hpp:1959
cv::waitKey
int waitKey(int delay=0)
Waits for a pressed key.
highgui.hpp
cv::IMREAD_GRAYSCALE
@ IMREAD_GRAYSCALE
If set, always convert image to the single channel grayscale image.
Definition: imgcodecs.hpp:66
cv::FlannBasedMatcher
Flann-based descriptor matcher.
Definition: features2d.hpp:1069
cv::imread
Mat imread(const String &filename, int flags=IMREAD_COLOR)
Loads an image from a file.
cv::drawMatches
void drawMatches(InputArray img1, const std::vector< KeyPoint > &keypoints1, InputArray img2, const std::vector< KeyPoint > &keypoints2, const std::vector< DMatch > &matches1to2, InputOutputArray outImg, const Scalar &matchColor=Scalar::all(-1), const Scalar &singlePointColor=Scalar::all(-1), const std::vector< char > &matchesMask=std::vector< char >(), int flags=DrawMatchesFlags::DEFAULT)
Draws the found matches of keypoints from two images.
cv::DescriptorMatcher::match
void match(InputArray queryDescriptors, InputArray trainDescriptors, std::vector< DMatch > &matches, InputArray mask=noArray()) const
Finds the best match for each descriptor from a query set.
imgcodecs.hpp
cv::Ptr
Template class for smart pointers with shared ownership.
Definition: cvstd.hpp:281
cv::max
void max(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element maximum of two arrays or an array and a scalar.
cv::imshow
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
features2d.hpp
cv::Mat
n-dimensional dense array class
Definition: mat.hpp:741
i
for i
Definition: modelConvert.m:63
core.hpp
cv
Definition: affine.hpp:52
cv::Mat::data
uchar * data
pointer to the data
Definition: mat.hpp:1961